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SUMMARY

This memorandum outlines the mathematical formulation of a
polarimetric theory for radar scattering. The emphasis is placed
on physical interpretation of some fundamental results from the
theory of nonsingular linear transformations and the general
scattering problem treated as a geometrical transformation on the

a Poincarg sphere.
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INTRODUCTION

When an object of arbitrary size, shape and material scatters an incident

electromagnetic wave, measurement of the parameters of the scattered field may

be used to yield information about that object. One very important parameter

of the wave which has not been fully exploited in the past is its polarisation.

On the whole radars havc measured amplitude, phase and doppler shift of targets

but have remained fixed polarisation devices and thus have not obtained the

maximum available information, even for a fixed frequency and aspect. The

capability of obtaining complete polarimetric information is therefore an

attractive feature, and how this information may be gathered and best used is

the subject of these lectures.

Although polarimetric techniques have found widespread use in optical

instrumentation and mate-ials analysis for many years, the relevance of polari-

metric phenomena to microwave scattering has remained primarily a topic of

theoretical interest only. This is unfortunate since at longer wavelengths

polarisation is a more significant parameter in scattering than it is in optics

and as such promises to yield a considerable amount of target information.

Since polarisation may be described as the spatially directive quality of a wave

then knowledge of the scattering characteristics of an object might be expected

to yield information relating to target symmetry, geometry and material properties.

As a simple example consider rain clutter suppression radars which transmit and

receive like sense circular polarisation on the basis that this will cancel the

backscatter from spherically symmetrical raindrops. It will be shown in the

course of these lectures how more subtle indicators of target symmetry may be

derived from knowledge of the polarisation transforming properties of the target.

Recently there is a great deal of interest in optimising radar system

performance and in target identification studies both of which require a more

exact target descriptor than the conventional fixed polarisation radar cross

section(1 One way of providing this is to describe the target by a polarisation

scattering matrix of finite dimensions with manipulation of this matrix in the

-radar signal processing yielding target information. Essentially this means

that the transmit/receive antenna assembly no longer acts as a polarisation

filter but collects full polarimetric information and allows all filtering to be

performed in the processing). With ongoing advances in the field of digital

and analogue signal processing technology this allows for practical exploitation

of polarimetric information.
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The importance of developing a full polarimetric theory for radar scattering

was realised in the late nineteen forties. In particular E.M. Kennaugh demon-
5trated the importance of polarimetric techniques when, in a series of reports

written between 1949 and 1954(2), he introduced the important concept of null or

optimal polarisations for radar targets. It was Sinclair(3) in 1948 who was the

first to describe the polarisation transformation properties by a 2 x 2 coherent
(4)Sscattering matrix. At about the same time Mueller developed a more general

matrix calculus for handling partially polarised waves in optics. This calculus,

based on Stokes vectors was applied to radar scattering much later by J.R. Huynen(5)

and allows a polarimetric theory to be developed for handling radar scatter from

fluctuating targets like chaff or clutter. More recent developments have seen

the practical implementation of programmable polarisation filter design and its

use for more efficient suppression of rain clutter( 7 ). Significant theoretical

work on incorporating polarimetric techniques with broadband scattering theories
(8)

has been done by Boerner . Despite these advances the full potential of polari-

metric techniques has still not been realised and one can only speculate as to the
future. Certainly the next decade will see the emergence of more and more radar

systems utilising polarisation for optimised performance.

POLARISATION DEFINITIONS

Before undertaking a full polarimetric description of target scattering it

is necessary to consider the various methods used to describe the polarisation

of a wave. In this chapter we shall cover three methods: firstly, the orthogonal

component decomposition for plane monochromatic waves. The geometrical parameters

of the polarisation ellipse will then be related to these plane wave parameters

since the former are useful when considering graphical aids to polarisation

problems. Finally, the more general Stokes vector formalism shall be developed

and related to the other representations through the Poincard sphere.

In the most general case a propagating electromagnetic wave has six field

components, namely three mutually perpendicular electric and magnetic field

vectors (Ex Ey9 EzHxyHZ). For most rddar applications, however, it is

sufficient to consider only the case of plane time harm.nic waves travelling in

free space so that in general we may write the field as

2



iEX ax cos( + 6x) la E - H y,

n - impedance of free space - 120 v

E y ay cos( + 6) - lb * t - wt-kr

6x Sy instantaneous phase of E
components at t - 0

E z 0 w = angular frequency
z

k 2ff

r - range from source

Here, x,y,z is a right handed set of cartesian co-ordinates with the direction

of propagation of the wave in the z direction.

"If the plane wave assumption is relaxed to allow partially polarised waves

where ax, ay, 6 x, 6 are functions of time then the wave must be

specified by its second order statistics or coherency matrix(9)

<EE *> <EEy>x x x y

JEE y *> <> = time average

Note, significantly, that J is Hermitian and so may be written in the general

"form

a[~i b-ic]j b+ic d

*Thus four real numbers (a,b,cd) are required to specify the second order

statistics of the wave.

3



1. ORTHOGONAL COMPONENT DECOMPOSITION

The polarisation of a plane monochromatic wave is defined as the locus of

the electric field vector (E +Ey) in a plane perpendicular to the direction of
x y

propagation. In general the vector direction will change as a function of time,
and according to IEEE standard (10)when observed along a line of sight anti-

parallel to the direction of propagation is called left handed polarisation if

it rotates clockwise and right handed if counter clockwise. If the E vector

does not rotate at all, the wave is said to be linearly polarised.

In order to derive an expression for this locus for arbitrary a x,a y,6
(9) X X

combine equations la and lb so as to eliminate ( When this is done the

equation for the locus is

7Esin 6 6 -6 - 6
aay axay Y xy "y -Y y

This is the equation of an ellipse for which linear and circular polarisations are

special cases. In general, the wave may be represented by the two component

column vector

E :X a x Jr_ +x )

Wheno [E=- Re J6xy e
?E " Y a • e

When considering only the state of polarisation of this wave then use will be

made of the column vector

A,.P -J 6xy

Formally, this vector, each element of which is complex, forms a spinor and much ..

of what follows finds elegant interpretation in terms of spinor algebra .

Note that in the above notation x and y may be any two orthogonal polarisations

of which horizontal and vertical and left and right circular are common examples.

"Ir general any pair of elliptical polarisations will suffice as long as they

4.4



satisfy the orthogonality condition

x -y - 0

Each pair forms a so-called polarisation base written (x,y). Any polarisation

may then be represented in terms of a complex combination of these components

P- A. + B. x, - unit orthogonal vectorsX Y

A,B - complex coefficients determining P

Of interest is to consider how to express P in terms of an arbitrary base (x',y')

when it is known in terms of (x,y). The most general transformation (x',y') from

(x,y) has the following normalisation and orthogonality conditions

x' , xt* M 1

I y • y'* M 1

Xf " y,* a 0

"The transformation will be linear and so may be written

' x P,Q,R,S will be complex

y - ÷

- 4 In order to satisfy the above conditions this transformation will have the

general form

o i1 i2

= cosa e x + sina e y O < a c 90

y' -sin •e x + cos$ e y O< B < 90

From the orthogonality condition

-cosa sin$ e + sina cosS e 0 0

- 5



This leads to the conditions

0"3 - 02 -4

Further, we can set $I $4 = 0 without loss of generality and so can write the

transformation in matrix notation as

SCosa sina e

-sina e cosa i l
This may also be written

1 tana e

[T] - cosa _
[-tana e i

At this point is is useful to introduce the complex polarisation ratio defined

as

BJp

This ratio defines P in terms of the ratio of the complex coefficients A and B.

From this definition and the general form of [T] it is evident that

p = tana e 6

where -tana 0O4a <9O0 0

B OA 6 O < 6 360°

The geometrical significance of the two angles a,6 will be discussed later in

this chapter when considering the Poincarg sphere. Note that in terms of P

Cosa = (+ * pp*)

6



T
SThis then allows us to write [T , the transpose of [T], which governs the trans-

formation of coefficients of (x y) as

.4 ~[T]

I'•.

2. GEOMETRICAL PARAMETERS

A convenient method of representation of the polarisation ellipse is in

terms of its inclination angle e (0 < e < 1800) and ellipticity angle T

(-450 < T 450) as defined in Figure 1. By convention, positive values of T

' correspond to left hand polarisations and negative values right hane. The

• • amplitude of the wave is defined as in Figure 1.

In order to express an arbitrary state of polarisation P in matrix form

consider firstly that the x,y axes in Figure 1 are aligned with the major and

minor axes of the ellipse respectively. From the definition of T we can write

a cos wt [a COST coswt a COST

E w X Re I Je

a cos(wt+x [-a sinT sinwt Ja sinT

In complex notation

:•.L• JsinTj

For the general case where the major axis of the ellipse makes an angle 6 with

"the axes, this column vector is multiplied by the transformation matrix for

rotations in 2-dimensions to yield

cose -sine cosT
P = a - P(a,e,T)

[sine coseJ sinT]

In terms of these geometrical parameters, the orthogonal polarisation to P(a,6,T)

'V is defined as

'.•-



In other words an ellipse with its major axis rotated through 900 and with the

same magnitude of ellipticity but opposite sense (Figure 2). The transformation

matrix [T) changing (x,y) into (x',y') comprises two components: one representing

a deformation of ellipticity given by angle T and the other a rotation of the

major axis by ec. Thus

4 se) -sine FCOST J sinT

I TI =

Lsine cose JJ sinT COST
C CC c

By expanding this matrix product and comparing terms with [T] written in terms

of a,6, the relationships between the geometrical parameters and the polarisation

ratio terms may be derived as

cos2a - cos2e cos2T

tan6 - tan2T csc2E"

with the inverse relationships

tan26 = tan2a cos65

sin2T = sin2a sin6

STOKES PARAMETERS AND THE COHERENCY MATRIX

The above definitions are adequate when considering coherent waves

ie waves where the parameters of the polarisation ellipse are independent of time.

More generally it is of interest to consider scattering from fluctuating targets

and in these instances the polarisation ellipse will fluctuate as a function of

time. In particular <Ex> and <E > may equal zero for uniformly random variations
y 

(9)in phase and so in order to describe the wave one must use its coherency matrix

This measures the complex correlation that exists between two orthogonal polari-

sation vectors over the period of observation. At the two extremes there will be

either complete correlation in which case the wave is coherent and elliptically

8



polarised (ep) or zero correlation which implies a randomly polarised wave (rp).
In general there will exist some degree of correlation and hence the wave is

termed partially polarised (pp).

Previously the coherency matrix was defined as

"ExEx*> <E E <a 2> <a a e xyx x xv J x x y

<E *Ey> <E E *> < a a e xy> <a 2 >

b-ica xx 3xy

b+ic dyxy

-,- Note that:

Trace (J) = sum of diagonal elements J 3 + 3 ff total power in the wave.Sxx yy

Also, since J J are non-negative:;•q¢_xx yy

det (J) xxJ - J J >Oxyy xy yx

For rp waves there are no preferred polarisation parameters and so

- xx - yy and Jxy - yx 0

.. •At the other extreme, for ep waves axay 6 are time independent s

•--,•~ ~ 2 xy x

€..det (J) - a 2a 2 a 2a 2 eV x e• -J= 0,¢?x y x y

•"[J] PR QQ* 0

- - " 00
P R5

IQ Q

At heoterexrem, orepwaes a6 retie ideenen s



Of particular interest is the decomposition of a partially polarised wave into

the sum of an rp and and ep wave

3 - 3 +3jc
pp rp ep

where

"pp rp eep0P 1 Q* R•.

yx yy

From the determinant equation

(3-)( I)- 3 1 0
xx yy xyyx

Thus I is an eigenvalue of the coherency matrix given by

I = (Jx + 3y) ± l((Jx + jyy)2 - 4 det (J))

xx yy xx yy

Both roots of this equation are real and non-negative but since P,R > 0 the

negative sign must be taken showing that the decomposition is unique. As before-' .5.•.5

the total intensity of the wave is given by Tr(J) J + J and the total powerxx yy -•
density in the ep part of the decomposi.ion yy

4T 0 P + R- ( + J) 2 (34R ( det(JD2  V
r ep =:x yy

From this the degree of polarisation of the wave is defined as

S= ~~power in ep component 4det(J) ••.-

pp total power ( i

10



STOKES PARAMETERS

"Of particular interest is the representation of the coherency properties by

four real quantities instead of by the complex correlation matrix. One such

choice of quantities was developed by Sir George Stokes in 1852 for use in

vibrational theories of light propagation in the ether. They are formally
(13)

defined as the four components of the associated longitudinal vector of

the polarisation spinor P as defined previously and as such allow the use of the
(14)Minkowski model of Lorentz space for handling polarisation problems. They A

are related to the elements of the coherency matrix as follows:

go I(Jxx+Jy) + (a + d) - Tr(J) - <a 1
2> + <a2

2 >

- - 2 2g (.''"•(ad <a2> -<a >
1 xx yy 1 2

+J)b <a a Coss >
92 i(Jxy + Jyx 1 2 12

km g3 = i(J- ) - c - <a a sin6 >

93 xy yx 1 2 12

S=(go g1 g2 g3 ) is a Stokes vector

Physical interpretation may be placed on the elements of & by considering the

case where the coherency matrix is represented in terms of (h,v) base. Under

these circumstances go represents the total power density of the wave; g1 is a

measure of how much like vertical or horizontal the wave polarisati'on is; g 2 a

similar measure of ± 450 nature and g3 a measure of the ellipticity of the

polarisation.

A derivation of the Stokes parameters from the coherency matrix may be had

by considering an expansion of the latter in terms of the Pauli spin matrices

ao0 ,a 1 , 2 ,o 3 given by

0 1 [ 2 [0 2 3 [1 iL0 1 11 0* L1  Uj "i

These four matrices form a representation of a mathematical group with the

following multiplication table:

•,, ~11 .



-~~.~-wJ~~.P Jý .~ P ~ ~ --

00 01 02 a3

00 00 01 02 o3

1 1 0 3 i2

a2 °2 Lu3 00 -1

03 a 3  -ic2 iao1 a0

It is well known(15) that any 2 x 2 matrix [S) may be expanded in terms of this

set so that

3p

I2
where S are the coefficients of expansion given by

S~S - Tr{S o

SS. T {

For the particular case of the coherency matrix the expansion yields

0 W T r(0J) - a + d - gO

S1- a rJTOa) - b a g2

S2 - Tr(Ja2 ) 2 c 3

S0 - dTg,
3 r(03) 3 a-d

Notice the change of order of Stokes parameters when compared with the previous

definition, an unfortunate complication arising in many areas of polarisation

algebra and one which causes untold confusion when carried through to scattering

matrix theory. The above is known as the natural ordering of Stokes parameters

and is frequently used in optics whereas the previous definition is termed
kv(5) -

V traditional. Unfortunately in the radar literature there is yet another

P_.j permutation used and for want of a better name I shall call this the radar

ordering. This arises from defining the Pauli rmatrices as

12



1%1- W-9... -

0 1 0]zal01 [10)002 [BJ Cy3 0  )
Notice that in this case S must be multiplied by

-•.• [M] r "
-1 0 0 -i

0 0 i 0

in order to achieve real Stokes parameters.

In the radar ordering the Stokes vector takes the form

S=(go$ g 3 ' g2, g1)

To transform between the different systems the following matrices must be used

4 9

_gO 1 0 0 o gn0  1 0 0 0 g0

-g 0 0 1 0 1g1 0 0 0 I gl

2 0 00 1 1;2 0 1 0 0 g 2

93 LA 1 0 0 1 0 g3
n -r" La 0 - radar

Occasionally the so-called modified Stokes vectors are used which are related

to g (g 0 ,g 1 ,g 2 ,g 3 ) by

2
1m g 0 g a> -gmO go + g, , <ax

gm, = go -g <a,> a d

Era2 ' 2 :o

A dm3 ' 3

The orthogonality condition for Stokes vectors Ax and iy is

13



Jx "LY goxgOy + lxgly g2xg2y + g 3 xg 3 y 0

Only the traditional ordering shall be considered in the remainder of this chapter

since it leads most conveniently to the Poincard sphere representation of

polarisation.

Comparison of the properties of the Stokes vector with the coherency matrix

gives rise to the following useful relationships.

The determinant condition for J becomes

2 2 2 2
g0  g~ 2  + 93

This is known as the condition for physical realisability of the Stokes vector .

and for an ep wave becomes

2 2  2 2go "gl + g 2  + g 3

For an rp wave

Sg 2  = gj -0 thus j- (go, 0,O,0 O)

The decomposition theorem becomes

A l= p + . p rp

p ((g 2 + g 2 + g3 2)• g1, g2, g)1 + g2+ 3 2 91 92# 93O

grp (g9- (g1 
2 +9 2

2 + 0, 0, 0) . t

Finally, the degree of polarisation is given by

(g2 + 92 + 93
*D - (g g ,)

,?.% p g0

14



The condition for physical realisability states that for an ep wave

3

i-l

The three Stokes parameters (g, S2 g3 ) may be thought of as the co-ordinates of

a point in three dimensional space with distance from the origin given by go.

Further, this radius is equal to the amplitude of the wave and as such the loci

of polarisations of equal amplitude is a sphere. In optics this is called the

Poinard sphere, there being a one to one correspondence between points on the

surface and the set of all possible polarisations. Note that this spherical

geometry is only true for coherent scattering and for partially polarised waves

the transformations occur on different spheres( 1 6 ). It is a feature of the
Stokes vector formalism that it allows the treatment of such problems and as

such forms the basis for a general theory of depolarisation for which coherent
scattering is a special case. Shown in Figure 3 are some examples of normalised

Stokes vectors for some commonly used polarisations.
i

The transformation equations governing the movement of a point over the

surface of a sphere are well known from trigonometry(17) and are best represented

'1 by three Euler angles, each representing a rotation about the x, y, z axis

respectively. The geometry of this problem is shown in Figure 3 which shows a

right handed Cartesian co-ordinate system together with various co-ordinates of

the point P in polarisation space. For transformation of P by an angle v about
the x-axis the governing transformation matrix for . is

"1 0l 0 0

R (v) - 1 0
l 0 cosv -sinv

0 sinv cosvj

Similarly for transformations by T and i about the y and z axes respectively

1 0 0 0 1

lsn 0 COST0 0 0 0

15



A general transformation is then written

R - R ()R y(T) R (v)

Rather than consider the cartesian co-ordinates of i it is sometimes convenient

to consider the angular co-ordinates (latitude and longitude). In order to see

how these are related to the geometrical parameters of the polarisation ellipse

consider again the original form of the coherency matrix.

'<EEE*> <E E*>

SL<E X*E <E yE y*> ,

In terms of the geometrical parameters

E cose cosT - isine sinT-

[E y a[sine cosr + icose sini-

Thus

2
<EE *> 2<-(l + cos2e cos2r)>Xx 2

2 M

<E Ey*> a <fl( - cos2e cos2T)>

a 2

<ExEy*> - a-(sin2e cos2r - isin2-)>

2
S<EYE*> ,a-(sin2e cos2T + isin2T)>

Thus

16



0 Ma 2

1 - a2 cos2e cos2T

g2  - a2 sin26 cos2T

g3 - a 2 sin2T

From standard spherical trigonometry these are seen to be the equations relating

spherical polar to cartesian co-ordinates and hence the remarkable result that

the latitude and longitude of a point P on the Poincard sphere are 2T and 26

respectively where e and T are the inclination angle and ellipticity angle of

the corresponding polarisation ellipse (Figure 4).

The relations between e,T and a,6 (the polarisation ratio parameters) are

again standard results from spherical trigonometry(1 8 ). They form the elements
of a spherical triangle as shown in Figure 5. The a,6 co-ordinates figure

prominently in the theory of null polarisations.

The Poincard sphere has the following interesting properties:

a. The poles of the sphere represent left and right circular polarisations

(t = ±450).

b. The upper and lower hemispheres map similar sets of elliptical polari-

sations with opposite sense. The upper hemisphere is chosen arbitrarily for

left sense polarisations (positive 0).

c. The loci of polarisations of equal ellipticity are in planes parallel

to the equator which itself represents the set of all linear polarisations.

d. Orthogonal polarisations lie diametrically opposite on the sphere.

-It is worth noting the similarity between the Poincard sphere and its plane
(19)projections and a similar geometry used for impedance calculation in circuit

theory. Indeed the Smith chart is a projection of the impedance sphere and may

be similarly used to solve polarisation problems. This commonality between two

seemingly different areas of work can be quite useful for understanding

17



(19)transformations on the sphere9. The similarity arises out of the fact that

P is a complex ratio of like field components in a plane perpendicular to

direction of propagation while the impedance Z is a similar ratio of electric

and magnetic field components.

Although the Smith chart could be used for polarisation problems the most

common plane projection used is the Polarisation Chart as shown in Figure 6.

Note that two such charts are required to allow for mappings on both hemispheres,

the chart being a projection of the sphere onto the equatorial plane so that linear

polarisations lie around the circumference with circular in the centre. There

has also been a scale change in order to give a linear reduction in eccentricity

from unity in the centre to zero on the circumference.

RECEPTION OF POLARISED WAVES BY AN ANTENNA
I

In this section an expression will be derived for the power received by an

antenna whose polarisation is fixed as P, being used to receive a plane wave with

polarisation Q. An ideal antenna will be assumed for the sake of clarity and the

more general problem of non-ideal antenna characteristics discussed in a later

chapter.

The polarisation of an antenna is defined as the polarisation of the wave

it radiates on transmit (remembering that this is defined in a right hand set of

x,y,z co-ordinates where the positive z direction is pointing in the direction

of propagation of the wave). Using the geometrical parameter representation we

may then write the antenna polarisation as

Pose -sine -COst
-p p p

-sne cose _isin'rT

'a is the gain function of the antenna. The geometry of the problem to be
p A

solved is then as shown in Figure 7. The important point to note is that Q is

defined in its own set of right handed co-ordinates which are different to those

of i. One system is obtained from the other by a 1800 rotation about the y axis.

In matrix notation the x,y co-ordinates may be related as

18



Although it is debirable to define the polarisation of an incoming wave in terms

of its own co-ordinate system it is also convenient to derive an expression for

the received power using polarisations defined in the same co-ordinates since

then the same point on the Poincard sphere may be used to represent an antenna

whether it transmits or receives.

In its own co-ordinate system the incoming wave is defined by

ose -sine COSq
A q q q
Q aq q]

q sine cose sinr

In order to express this in terms of the receiving antenna's co-ordinates

cose cosT - J sine sinT
q q q q

a

_sine cosT - J sinT cOSeq q q

It is easily verified that

Q q(a ,e ,q q) a p(aq,-e q, - q)

Thus, if a wave of polarisation &q is incident upon an antenna, then for that

antenna tobe matched to the wave in the x,y plane it must not have the same

polarisation as Qq but the one given as Qp, ie opposite sense and negative

inclination angle. This is called the symmetric polarisation to Q and is shown
q

geometrically in Figure 8. This may seem a remarkable theorem and has certainly

been at the root of much confusion in the past but is easily verified by

considering transmission between two facing antennae, both of which are polarised

at 450 linear. In this case they are orthogonally polarised to each other and so

19
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"no power will be received at all. In fact it is only for vertical and horizontal

that the symmetric polarisation is equal to its parent.

Also shown in Figure 8 are two other useful polarisations related to the

same parent Q. The conjugate polarisation is identical to Qq except for a change

of sense and is given by

&C (a c'c -r C)

The transverse polarisation has the same sense but negative the inclination angle

t (ac ,-ecc)

These polarisations are useful when considering the backscatter from targets with

certain symmetries. Figure 9 shows how these polarisations relate to their

parent on the Poincard sphere. It is convenient that by adopting the co-ordinate

change described we can dispense with such transformationson the sphere and write

the equation for received voltage as

Qp " QRq

where P and & are defined in their own co-ordinate systems and the dot product

for complex vectors is defined as

ia is ia is
a b = a e b x + a e Y b e Yx x y y

where

6 -

y . y ]J

Note that from this definition

a laa I + ayl2 2

20



Before working out an explicit form for V it is worth noting a useful form of

polarisation matrix algebra, based on the Pauli matrices discussed earlier,
which allow a short hand approach to be used in solving what would otherwise be
lengthy trigonometrical calculations. We know

Ca osO -sine Cos ST

sine cosejLisint]

The 8 matrix may be expanded in terms of the Pauli matrices to yield

cose -sine'F1=cose a~ isiiie 02 e 20-02

ILsine cose

Similarly for the T dependence

[ ost = ~r o er <[lJ
Lisinj kisinT COST 0O0

And for the sake of completeness

iv

- cosv a0 + isinv oa e
0 

3

This extension of the exponential notation from ordinary complex number theory

in*. to Pauli matrices is a powerful technique and allows the general polarisation

ellipse to be written as

V. ae ic ea ~2 eTOl 1

The following rules are useful for exploiting this algebra:

(c*+o)a acy ae 2 e 2 e 21. e2
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Proof

e • cos(a+B)o 0 + isin(a+O)o 2

,c- 2  so2
e e • (cosao 0 + isinao2 )(cos8s 0 + isinsc2 )

- cosa cosa + icosa singe 2 + isina cosso2 - sina sinB

= cos(a+0) + isin(a+$)o 2

Sao2 -ac2
2. e1 • e 0r1

Proof

a (cosao0 + isinao2 ) (cosco0 - isina 2 )o) (see multiplication table)1 2  0 2l 22

3. e e S e e

but

ao• o2 B801 so I ao2
e e - e e = 2 sina sin~o3

Using this notation the expression for received voltage

V -

- ae • e-pa2 e T p '[1] a q e eq02 e-Tqlo []

i(a p +a q ) -T q0 1-(e +6 q)G T P

w apaq e e e e 10[J il

,A eT q a 1 (coS(ep+q)ao0 _ i sin(ep+eq)cq 2 ) 2e [

And considering only the central portion
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Cos (0 p-) i (0 p) +r )q c

coS(S~eq) )o+isin(Op+eq)a 2 e

oput + - e -T q T + =,•p q P q P q

. cosEO(cosATo0 + isinATc)0 - isine2a (cosEro + isinfToI)
0 1 0 2 0

= cosre cos¶az0 + icosEe sinLToI - isinZ6 cosETa 2 + sinEe sin~Z ia3

In matrix form this becomes

CSE6 COSAT - isinZ8 sinET sinZ6 COSET + icosro sinLT'

ansinZe cosET + icosre sin6T cosEe cosLT + isinZ8 sinET]

and when multiplied out the expression for V becomes

V - A(cos(e +6 ) coS(Tp-Tq) - isin(6 +0 ) sin(T )

pq pq p q p+q

The received power is given by VV

"P Vj VV JAI 2(Cos (e +e )COS CT T + sin2 (e +e )sin2 (T +T )
p q p q p q p q

and by using the relationships

Cos 20 e 10 + cos20)

.2
sin2 6 (1 - cos28)

cos(A+B) u cosA cosB - sinA sinB

',": cos(A-b) = cosA cosB - sinA sinB

this becomes

• 2 2
a a:•"•'•.•zP zP -3•'-- [1I + sin2T sin2T + cos2T cos2@ c~os2T cos2e -COOTz sin2e COO2Tqsin2aq

2• P q P P q q P P q q
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This is a fundamental equation in polarisation analyses and as such warrants

further comment. Note that for maximum power received the conditions

60 -e and r T must be satisfied.
p q p q

In this case

2 2
P a a

pq

Notice that the condition on the ellipticity is not as might be expected since

it states that maximum power is received when the incident wave has the same

sense as the antenna, when both are quoted in their own co-ordinate system. This

is due to the fact that the sense of polarisation changes not only with the

rotation of co-ordinates provided by 03 but also depending on the direction of

observation, ie either parallel or antiparallel to the direction of propagation.

There are four independent power measurements required by an antenna in

order to determine Q as evidenced by the equation for P. Usually the four used

are linear vertical and horizontal, ,450 linear and a circular polarisation

and this allows the determination of (6q T q). Alternatively a dual channel 4,"

receiver could be used measuring simultaneously the vertical and horizontal

components of Q and as long as some measure of •he time phase angle between V

and H is provided this allows for the instantnneous measurement of polarisation. -p

This latter technique will be used later in order to determine the scattering

from targets.

.= In terms of the Stokes parameters the equation for P takes on the form of

a dot product, namely

P g0h 0 + g1 h1 -9g 2 h2 + g 3h3

II• where

S"" (go gl g2 g3 ) - Stokes vector for Q, the incident wave
hi h2 93 70-.1.

h = (hO ) - Stokes vector for P, the antenna polarisation

0 214 2



Notice that this may be written in matrix form as

1 0 0 0 g0  ho

0 1 0 0 g, h

0 0 -i 0 g2  h2

S0 0 0 'J g 3  h3

-b Xn general the received power P will not be a maximum and this leads to theS~r

definition of the polarisation efficiency

Prr r - 1 for polarisation matched antenna
2a

P q

r - 0 for orthogonally polarised antenna

-too

On the Poincard sphere P may be mapped as the antenna polarisation and then P1

lies diametrically opposite. If Q is the polarisation of the incident wave the

polarisation efficiency may ba related quite simply to the angular separation

between P and Q as follows. Figure 10 shows the two polarisationq mapped on the

sphere with 20 the angular separation. Figure 11 shows the so-called power

density semicircle from which it is evident that the normalised power in Q is

2 .2,
cos 0 + sin = 1

If Q is then decomposed into (P P1 )0 the fractional power contained in the P and
2 an i 2

c components is cos and sin respectivel>. From the definition of r this

means

2r - cos "

This relationship is of great interest in polarisation filter design since it

clearly demonstrates that the loci of constant response are circles centred on

the antenna polarisation. One of the reasons the polarisation chart is used as

a plane projection is that circles on the sphere translate to circles on the

chart and so allow the design of filters with the desired response in polarisation
(7)space 

k
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"4 TARGET SCATTERING MATRIX

In general terms a radar target may be described as a polarisation trans-

fotmer in that it operates on the incident wave such that the polarisation of

the reflected wave bears a complicated but deterministic relationship to the

incident polarisation. Further, the nature of this transformation will depend

on the geometry, surface structure and material composition of the target and in

the remaining part of these lectures it will be shown how by making appropriate

field measurements and processing the data in the correct way this information

may be made available for enhanced target detection and target identification.

For a complex radar target like an aircraft the scattering will not only be

a function of incident polarisation but of target aspect and radar frequency.

It will be assumed initially that these are fixed and that the scattered field

parameters are linearly related to the incident field. The polarisation trans-

forming properties may then be expressed as a transformation matrix, the polari-

sation scattering matrix. The dimensions and form of this matrix depend on the

representation cf polarisation used: for coherent scattering the incident and

reflected waves may be expressed in terms of polarisation base (x,y) and the

matrix is then 2 x 2 complex (Figure 12). Note that in general eight measure-

ments will be required; four amplitudes and four phase angles, for the determina-

tion of this matrix.

If the Stokes parameters had been used then the scattering matrix would be

4 x 4 and real (Figure 12). This then requires sixteen amplitude measurements

to be made but will contain extra information above that provided by the coherent

matrix since it is based on the more general Stokes vector formalism. This

matrix is known as the Stokes reflection or Mueller matrix and is of fundamental

* importance in describing the scattering of partially polarised waves. In 1970,
(5)S Huynen developed a decomposition theorem analagous to the decomposition of the

coherency matrix enabling a set of average coherent scattering matrix parameters

to be obtained from the Stokes matrix. In this chapter we shall consider only

the coherent matri: and its properties.

For [S] in (h,v) we may write

26



S"Sm l ,I tl l

E h .IsHH1 e 1 sHVI * oHV" Eh
h:] r i h

A •sI
Eviscattered J V j ej H I V I ej V L V

SL transmit

/44Is - Lt

It is assumed that [S] in this form has been premultiplied by a so that the h,v

axes are the same for transmit and receive as required by the Poincard sphere

representation. In the notation employed S means transmittinig polarisation xxy

and receiving polarisation ^ in both amplitude and phase.

The voltage received at a pair of antenna terminals for fixed transmit

polarisation PT' receiver polarisation P and target scattering matrix ISI mayT Ra

be written

4
VR S] T

For monostatic radar systems (ie ones using the same antenna for transmit

and receive) various simplifications may be made to S].

The absolute phase of the target is a function of its range and velocity

and as such is not a target related parameter (unless doppler type analysis is

required). Therefore there is no loss of generality if one of the phase angles I

in [S] is set to zero and the others measured relative to the corresponding

phase centre on the target. This then reduces the number of rcquired measurables

to seven.

For monostatic systems the reciprocity theorem for antennas demands

•" "," • IS] = [s]
- A *- B [S A

but

~I Sj

A rB = s A AB PB " S] P

27
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which implies

T(S] = [s)

This means that for monostatic systems the scattering matrix is symmetric

ie SHV = VH

If the phase of these diagonal terms is taken as reference then the so-called

relative scattering matrix results

E h ~s HH I e JHOV IsV E h.

Av[receive ISVHI HH V oV HJ[EVitransmit

This matrix is determined by measurement of five parameters, namely three

amplitudes and two relative phase angles.

Occasionally another 2 x 2 target matrix is used, called Grave's Fower

matrix it is related to [S] as follows:

M

The scattered power is given by

x " •[s]*s] t " * P

s s tt pt

5*T5  a c ~

where S is the transpose conjugate of [S] and P is Hermitian. For example, in

(hv)
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a s- IsHI 2 + Is

b IswIV + IsI

- S.HH 8,HV + 8VHSVV

Thus 'a' is the total available backscattered power in the horizontal component

due to both the SHH and SHV elements of I]S. Measurement of this matrix may be

had by transmitting four different polarisations and receiving the total power

backscattered in each case. This matrix contains a subset of the target informa-

tion contained in [S] and so will not be considered further in these lectures.

Figure 13 shows some examples of the relative phase scattering matrix for

simple radar targets. Note that all these matrices are quoted in (h,v).

The identity matrix is indicative of reflection from a flat plate at normal

incidence or from a trihedral retroreflector (both are same in a polarimetric

sense) while the double bounce dihedral reflector has a 1800 phase difference

between HH and VV. Also shown are some other important scattering types such

as the linear target and helix both of which are important when considering the
classification of targets as will be covered later in this course.

The most powerful aspect of scattering matrix measurement is that it allows

the prediction of target scattering for any transmit polarisation and as such

provides full polarimetric information about the target.

The transformation equations governing the prediction of target backscatter

in base (x,y) when it is known in (x',y') may be developed using the change of

base matrix IT] derived earlier. Care must be taken however to remember ýhat

IS] is an operator relating an incident to a backscattered wave and as such,

co-ordinate changes must be taken into account. The following relationships

hold:

1. IT] is a unitary matrix operator with unit determinant

4.

IT]-1 - T]*T det(T) - 1
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2. For the incident system

F•t(x,Y) - (TI 7.t(xyt)

3. For the scattered system

.9s(x~y) = IT] * sy')

The conjugate operator is employed because there is a change of sense of
polarisation when the scattered co-ordinate system is observed from the trans-

mitter co-ordinates.

From the definition of the scattering matrix

:• zs(x,y) = [ S(x,y)] A-t(x,y)

= [S(x,y)][T] t(x',y')

From 3

As NO ''y') [ IT]T Xs(xTy,)

As (x' Y') - T] T[S(x,y)][T] Xt(x,y)

Thus in general the transformation of [S] is given by the congruent transformation

T[ S(x',y')] -[T [S(x,y)][T]

By putting

Sy Sy

30



and expanding the matrix product, the transformation equations become

SX'X' - (l+P1")'I [p 2SYY 4 p(Sxy + s YX) S sX

Sx,¥, , (1+PP ) p Syy - p*S ÷ S+ - pp*S¥yx

SyIx, M (l+pp *) -1 [ Sy - P*S ÷ Syx - *Sxy]

SyY, - (+4" *)-I [ *2Sxx + Syy - p*(SxY 4 Syx)J

For monostatic scattering these simplify to

*),1 2SXX, (l+pp )- [ yy + 2S + SXX]

SSxY, ( ) -1 [fSp - P*S + S (l-pp*)]

"SyVx, (+PP)- [pSyy - p*S + Sxy(l-pp*)]

Syly, (I+pp")-I [p* + Syy- * 2S x]

Note that the symmetry of the monostatic matrix is preserved under this trans-

formation. The following quantities are also invariant under change of base:

a. det([S(x',y')]) - det([T] T) det S(x,y) det T - det S(x,y)

b. Tr(P) - total power returned to a pair of orthogonally polarised

SNantennas a Span([ S) - invariant.

These equations are quadratics in P, where p relates (x'y') to (x,y). For

example, if [S(h,v)] is known then [S(left circular, right circular)] may be

predicted by setting p " J. Then

SHH SVV + J JHH VV
2 HV 2

HH. vv- VVHHL-" 2 2 + J S HVJ
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Substituting the values for the trihedral gives

S(X,r) 
0-

and for the dihedral

This confirms the fact that for each reflection off a metallic surface, the sense

of polarisation is changed.

The congruent nature of the change of base transformation has several

important implications for interpretation of polarimetric data and in particular

* the following theorems are important:

1. Theorem 1: Any square matrix [S] can be transformed to diagonal form

by unitary matrices M and Q such that

MSQ - D a .i 6. 6 - Dirac delta function

Proof

[MSQI*T Q *T s*T M*T

Now premultiply

*Ts*TM*T *T*T *
Q S M MSQ -Q 5 SQ a azi *6.

Since Q is unitary

-I *TQ- QQ -Q S

Thus Q is the unitary matrix which diagonalises the Hermitian product
s*T Sby a similarity transformation.
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By post-multiplying we have

MSQ Q*Ts*T *T - Mss*T *T 1 .1.i

Thus M is the unitary matrix which diagonalises the Hermitian product

SS*T by a similarity transformation.

If S is assumed to be symmetric then M = QT

Proof

MSQ = D

QTsTMT = DT = QsT T D

QS.M - QSQT
14 QT

Hence we arrive at the very important result that under the change of

base transformation the coherent scattering matrix can always be

diagona lsed

Sie TI T]T[ S][ =

This is a result of fundamental importance since it implies the

existence of polarisations which remain unchanged when incident upon

the target. These so-called eigenpolarisations form the basis for the

processing techniques to be described later.

2. Theorem 2: The power matrix P is diagonalised by a similarity trans-

formation using the same unitary matrix Q which diagonalised the

scattering matrix by a congruent transformation and the eigenvalues

of P are real and equal to the squared magnitude of the eigenvalues

of IS]

Proof P - ST* and so by 1. the theorem is proved.
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MEASUREMENT OF THE SCATTERING MATRIX

There have been very many different techniques proposed for measuring the
(21)target scattering matrix and a good review of these is provided by Huynen

In this section only the basic-requirements will be outlined and some of the

limitations and problems pointed out.

The scattering matrix with absolute phase may be measured using a coherent

radar with a dual channel receiver capable of simultaneously receiving two

orthogonal polarisations and providing I and Q outputs for each channel

(Figure 15). The transmitter must then transmit two orthogonal polarisations

such that the four complex elements of [S] may be measured. Ideally, the whole

matrix should be measured at the same time but this requires some form of coding

for the two orthogonal transmitted polarisations so that the matrix elements can

be separated on receive. The easiest way of doing this is to time multiplex the

transmit waveform such that in a pulsed radar the transmit polarisation is

changed on a pulse to pulse basis. Thus it takes 2 PRI to measure the matrix

but isolation of the matrix elements is guaranteed. Note that if a priori

knowledge is available about the targets to be measured then it may be possible

to reduce these requirements but in general this will not be so.

The two main components needed for the SM radar above those of a conventional

fixed polarisation device are a polariser in the transmit channel and an ortho-

mode coupler (OMT) in the receiver. The latter device is a standard microwave

component and allows the separation of an incident elliptically polarised wave

into two orthogonal components. The polariser may take many forms such as a mech-

"anical switch between vertically and horizontally polarised feed channels or a

single channel Faraday rotation device with a ferrite phase shifter for

generating elliptical polarisations. Whatever the configuration, the transmitter

must be able to switch alternate polarisations at the PRF rate. This brings into

play an important problem in the measurement of scattering matrix. If the target

moves during the 2 PRI time-period necessary to measure the matrix then the

measurement will be inaccurate and if movement is too severe and the time period

too long then phase determination may be impossible. Thus coherent measurement

of the matrix is reserved usually for carefully staged range measurements or for

high PRF radars where the target motion is known to be within a certain band-

width less than the PRF.
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The problem may be overcome by measuring the relative scattering matrix,

since then, absolute movement of the target over the period of matrix deter-

mination is less critical. A schematic diagram of a pulsed radar suitable for

measurement of the relative SM is shown in Figure 14 together with a typical

measurement switching programme. The essential difference between this method

and the previous one is in the measurement of phase angle. This latter technique

does not require a coherent radar since the PSD may take one of the received

channels as its phase reference and so provide a measure of the time phase

difference between the two orthogonal polarisation components. The PSD must be

able to unambiguously determine angles in the range

-1 8 0 ° < •PD < 1800

One interesting possibility is to mix bases, ie transmit on base (x,y) but receive

base (x',y'). If the relationship between these bases is known as

(xy) [T] Z(x',y')

then the measured matrix [Q] may be converted into the same base by

E(x',y') - [Q) E(xy)

= [QJ[T] E(x',y')

This technique may be of use when there are limited dynamic range problems in

the radar receiver.

To date, measurement has been considered using ideal antennae and a noise

free system. In order to consider a more realistic system it is necessary to be

able to quantify errors introduced by using real antennas which have finite

lcsses and cross polar isolation. In order to do this one may consider a trans-

mission matrix for the antenna. In other words if polarisation vector § is

requested for transmission, what will actually be transmitted is

"Se,

For an ideal system [E] will be the identity matrix but for real systems will

"represent a distortion of ellipticity AT and a rotation of the plane of polarisation

35
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A6. If losses within the anteana are assumed small then [E] will be of the form

,S[8 -sinte]n COST JsincTv7coe . e£12]

vsint' cost•e JsintT COSAT_ -E 21 e

where 11', '22, c12' C21 are coirplex and Re(c 1l) 0 0, Re(£ 2 2 ) c 0, the equality
holding for zero losses, E J are functions of position within the antenna beam
and as one deviates further frcm boresight these errors tend to increase.

On receive the matrix [E] * operates on the desired polarisation Q, so the
net effect on measurement of [S) is the congruent transformation

1 ] E IT[S][E] [El - unitary for lossless antenna

In reality losses may arise from heat loss, reflections from support structures
and radomes. In this case [E] is non-unitary and the determinant and Trace of
[S] are no longer invariant under the above transformation. Using the above form

for [E] and putting

[. 1 1 s 1 2-

IS21 $221

%e yields

is] e e 1 11+ £21 $3 S1 2 + 1 2S+11 +21S22

-2S~ + J S ES2 + s J
L 21 £12S11  £21 22 e 22 £12 3 J

"where

-1 E 11 + 22

S3  = S1 2 + S21

£ 2 C 11 - £22
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"Notice that if S1 2 , $21 are small relative to the copolar terms then because

"r 12 £21 are small, the copolar elements are less susceptible to error. The cross-

polar terms however are more inaccurate.

In order to try and calibrate these errors in a system then at least two
calibration targets are required with known scattering matrices. For example

S1 - A ] > St = Ae£1 [2 :21 1

-- 0- - 2 E 12-

Shence can get E 12, C21' which relate to the cross-polar isolation of the antenna.

if

,* [SE £12 +£2

SA 12 + 1 e

and if the absolute RCS of calibrator is known the £19 £2 may be determined.

Two targets which correspond to these calibration matrices are a trihedral and

dihedral with its seam at 450 to the radar vertical. If these calibrations are

made and the scattering matrix measured within the target's scattering centre

* decorrelation time reliable SM data may be collected and made available for

processing. Note that if the Stokes parameters are used then they give a direct

measure of the polarisation purity of the received wave and its susceptibility

to noise.

TARGET PARAMETERS

By measurement of the five parameters of the relative phase SM in some base

(xy), the scattering for any incident polarisation, given by the loci of points

on the surface of the Poincard sphere, may be predicted by the transformation

* equations derived earlier. The question arises as to how best process this data

in a manner which will yield information relating to target geometry and symmetry

independent of which base is chosen for measurement. It will be shown in this

section how such a set of five target parameters may be derived and how they may

be used to improve radar performance.
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I The target descriptors are based on knowledge of the so-called target

characteristic or null polarisations. These are transmit/receive polarisation

pairs which result in zero target backscatter. There are in general four such

polarisations and every target, however comViex, has such a set. The proof of

"the existence of these polarisations is based on theorem I from the previous

section, namely that there always exist two polarisation vectors which diagonalise

the symmetric scattering matrix.

The two polarisations corresponding to the diagonalisation of [S] are termed

the eigenpolarisations or cross-polar nulls (XPOL) in that when they are trans-

mitted they remain unaltered on reflection, so that by receiving in the orthogonal

channel a null response would be obtained. Care must be taken when calculating

these polarisations since as usual the co-ordinate frames must be related so

that the Poincard sphere representation may be used. When allowance is made for

the conjugate nature of the backscatter co-ordinates when compared to the trans-

mitter then the eigenpolarisations are solutions of

"e.I [5] . - complex eigenvalues

"It is now apparent why these are called eigenpolarisations since this equation

is similar to the classical eigenvalue problem

The conjugate sign in the polarisation problem forces the corresponding eigenvalue

to be phase determined whereas in the more commonly met form of eigenvalue problem,

if X is a solution then so is Xeis 0 < 6 < 360'.

From theorem 2 the eigenvectors of [S] are the same as those of S*S and the

latter has real eignvalues given by the square moduli of the eigenvalues of IS].

- When the eigenvalues of [S] are distinct then it may be shown that the two

corresponding eigenvectors are always orthogonal.

Proof let Xi, A2 be the two eigenvalues and X > 2

then [SI = gi 2

IS) s 2 =X2 Z2
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Since [S] is symmetric

S' F6 2 - * )9

hence if Al. ,# X2

91 " 2"- 0

This is the condition for othogonality of polarisation vectors.

On the Poincard sphere XIX2 lie diametrically opposite and so knowledge of

one immediately determines the other. Thus two of our desired target parameters

are the latitude and longitu.de or ellipticity and inclination angle of one of the

eigenpolarisations. The one chosen is the eigenvector with the largest corres-

ponding eigenvalue since the maximum RCS of the target is given by the square

modulus of the maximum eigenvalue.

Proof

A 0

PTOT [DIX[]**D

(a[ DIX, + b[ D1 2 ) (a*[ D]i + b*[ D

,- Ial~•li 1 2 + 1b1 2 1X2 12  since

""A 11 - Jb (IX1i - 12I)

Hence if 1A then maximum power is obtained if fbi - 0 ie the maximum
polarisat~ion l~a = F" and Pma u Il2. n the above

X aZ 1 + bX2 and Ia12 + Ibl' 1

39



This maximum polarisation 4.s the third target parametsr and is obviously of

great importance to radar systems since it is the maximum RCS that may be

obtained for a target at a fixed aspect and frequency.

Another method of calculating the eigenpolarisations is to consider the

general transformation equations, quadratic in p. The eigenpolarisations are

seen to ba solutions to

*S *SSxn - 0 Sy - +*x ÷ s (1 - Po*) i

This equation may be solved by noting that S *S has the same eigenvectors as [S]

and is diagonali~ed by a similarity transformation

T s1 S S T

If this matrix product is expanded then for the off-diagonal terms to be zero

the equation

P 2b + p(a-c) - b* = 0

where

b - SxS + SyS

C X S y* SxyS+ y*

so

R + 4R2 R
- 1 1 2  3S01,2 =2R2

R - 2

R1 IsYY12 IsY'12

R - SS + SS*
2 4YYXY XY0 *
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R3 2

These equations give two values oi p corresponding to the two eigenpolarisations.

By writing p tana ea then the latitude and longitude of the eigenpolarisations

may be found from

1 4 tarctan(tan2a coca)

T 1 arcsin(sin2a suinS)

As a simple axample of the igeinpolarisations of a target consider the back-

scatter from a wire grid target as shown in Figure 16. If the grid is aligned

at 00 to the incident vertical then the polarisation of the backscattered wave

will be vertical, independent of the incident polarisation. Thus vertical is

one eigenpolarisation while horizontal is the other. Further, vertical is

obviously the maximum polarisation since for horizontally polarised waves there

is zero backscatter. If the grid is now rotated about the radar line of sight
then these eigenpolarisations remain linear but rotate in the equatorial plane A

of the Poincar4 sphere.

The remaining two characteristic polarisations are the copolar nulls (COPOL)

I or incident polarisations which are transformed into their orthogonal state on

reflection. These may be determined from the transformation equations by

xx 0 M P2Syy + 2Sp xyP + S

-S ± -

ie p3 , 4  2S
2Syy

It is these polarisations which are exploited in rain clutter suppression radars

since spherical raindrops have left and right circular polarisation as their

copolar nulls. Notice that,although in this case the COPOL nulls are orthogonal,

"in general they will not be so.

Of particular importance is the relation of the COPOL nulls to the eigen-

polarisations and in order to develop this relationship consider transformation

of the scattering matrix when it is expressed in (XI,X 2 ) where R and R are the
21 2
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""S]' [ [T] [DJ[T]

* 1.p [21 :]" ][ Ti"J p *'A P.o } ~

-- 1 4p 2 A2 PX2 P*Xl

l+pp* 2 + P*2X I

For the transformed matrix to be a COPOL null then P must satisfy

A 1 + p2X2 0

P2 X 1 ta 2 (1eJ263,4 -" tanX

From this we may write [D] in the form

S [m eJ +v) 01 where m
O m tan2 yJ(4-v y - 900 - a O< Y < 450

v 6 -90 -90 0 v < 90,

The two solutions satisfying these conditions are

•I J6

P3 +J - tana e

P4 -J -tano e

In terms of the Deschamps co-ordinates on the Poincard sphere these points are

given by ( 2yrv) and (-2-yrv) taken from the minimum eigenpolarisation X2 " In
order to express the transformations from the maximum polarisation X1 , then
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2y - 1800 - 2y and v + -v. Hence the points become (2a,v) and (-2a,v), where

positive v is taken in an anticlockwise direction from the equatorial plane and

yv are angle. from [D].

These results are very important since they show an interesting geometrical

relationship between the two sets of null polarisations. As has already been

noted the eigenpolarisations lie diametrically opposite and now we have the

additional information that the COPOL nulls have co-ordinates (± 2c, -v) from
the maximum eigenpolarisation. Thus all four points lie on one great circle

which defines a plane in polarisation space (Figure 17) and the diameter joining

the eigenpolarisations bisects the planar angle between the COPOL nulls. The

resulting structure is known as the polarisation fork and is a powerful graphical

aid to radar target classification studies. The fork prongs are drawn from the

origin to the COPOL nulls and the length of the 'handle' is the radius of the

Poincard sphere or the span ([ SI), which is a transformation invariant equal to

the power in the polarised component of the wave. Note that some authors take

the target maximum RCS as radius of the sphere but in order that the results

be consistent with the Stokes formalism it will be taken in these lectures as

r n g12 + g 2 2 + g 3  - Sp([SD)

This now enables us to classify different radar targets according to a five

element target vector given by

V - (2619 2T1, v, Y, m)

The first three angles define the plane of the fork in three dimensions, the

fourth angle is y being the fork separation and relating the difference in

magnitude of target eigenvalues. The final parameter m is the target maximum

RCS. In the next section these ideas will be developed further and examples

given but first consider again the diagonalised form of [S]

[S] T D TT* [DI - o 2

- [m e l+v 20iv]

0 m tany ey
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Using the Pauli matrix algebra developed earlier we may write

* - rl01  -81o2

T *aa a

T*T T1 a1  1a2

JVCT 3m0 a3
* D - eev0

0 m •tan2y.

Thus

T a e8  2 e va" 0 Iv T0a e10a"IS] e" 1 1e 1°2 e 3 e3e

0a [ m tan 2-y. e

This form is used when developing relationships between the coherent theory and

Stokes matrix. This is the next logical step in the theory but is beyond the

scope of these lectures. For those interested, further details may be obtained

in references 5 and 15. (See also appendix 1).
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CLASSIFICATION OF RADAR TARGETS

In the previous section the target vector V was developed which has five

parameters and presents a full polarimetric descriptor of the target. In this

chapter some time will be spent investigating the form of V for some simple

radar scatterers and outlining a basic scheme for classifying radar targets

according to their polarimetric properties. Note that we are still considering

fixed aspect and frequency data and coherent scattering in the far field of the

target. The problems of scintillating targets and change of aspect and frequency

will be briefly considered later.

Let us define the polarisation spectrum of a target with scattering matrix d,

IS] by the copolar and crosspolar RCS both given as a function of polarisation.

Shown in Figures 18 and 19 is the spectrum of a simple flat plate or trihedral

target. On these plots 6 is mapped from 0 4 1800 versus T the ellipticity

(-450 < T < 450). Notice that the copolar plot shows a maximum RCS for all

linear polarisations and a null for left and right circular. The crosspolar

plot shows a maximum for circular and a corresponding null for all linear.

These properties may be summarised by writing the target vector

V (00, 00, 00, 450, m) m = 2  A - area of plateA2~

X - illuminating wavelength

When mapped onto the Poincard sphere the polarisation fork for this target is as

shown in Figure 20. The fork has maximum angle separation (y) which is indicative

of the copolar nulls being orthogonal. Notice that because the eigenpolarisations

include the whole equator this target is rotation invariant ie there is no change

in the fork if the target is rotated about the radar line of sight.

Compare these results with those for the dihedral reflector as shown in

Figures 20-23. The dihedral is assumed to have its seam parallel to the radar

vertical and thus has two nulls at ± 45 linear and maxima for all polarisations

with 0 - 00 or 900 and -450 < T < 450. The target vector is

V - (00, 0°, 90°, 45°, m)

The polarisation fork is similar to that of the trihedral except for a 90°

rotation about the eigenpolarisation axis. This is the skip angle and relates
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to the number of bounces the reflected signal undergoes. In general however the

skip angle is the phase angle between eigenvalues and so does notlend itself to

such simple physical interpretation. Note that because of the form of polarisa-

* tion fork the dihedral is rotation dependent and for a general rotation angle

the target vector becomes

V - (20, 0, 900, 450, m)

ie the fork is rotated in the equatorial plane by 240.

The wire grid target considered earlier has the polarisation fork shown in

Figure 24. In this case

V - (2p, 0°, 0, 0 ,0m)

Notice that the copolar nulls are now coincident and the fork has collapsed into

a straight line. For the grid at an arbitrary angle p it matrix is

*s [ cs .Is]

Lsin2p sin2

and as such the fork rotates by 2t in the equatorial plane.

These are all examples of an important class of symmetric targets. The

general form of [S] in (x,y) for a symmetric target is

2 iv %

S where (x,y) is a linear base
tan2y e-2iv ,

All targets having an axis of roll symmetry are symmetric at any aspect angle,

eg cones, cylinders, ellipsoids and combinations of these. Other targets like

corner reflectors may have a plane of symmetry through a line of sight direction

and thus be symmetrical targets. All these scatterers have a target vector

V - (e, 0°, v, Y, m) ie T - 00
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"This may be illustrated by virtue of Figure 25 which shows a general symmetric

radar target and a proposed maximum polarisation Pmax" Because of the symmetry

of the object there must then be another maximum polarisation Pmaxz obtained

from Pmax by reflection in the plane of symmetry. However theory states that the

eigenpolarisations are orthogonal and so Pmax must be either parallel or perpen-

dicular to the symmetry axis. For either choice T. W 0 and the eigenpolarisations

are linear.

Symmetric targets are characterised by their eigenpolarisations always lying

in the equatorial plane and are of special interest in radar scattering studies

since many of the most common radar targets show these features.

The class of non-symmetric targets are classified by T 0 0. The maximum

value that Tm may achieve is ± 450 and it does this for a helix target which
,"i m

has the matrix

1 [1
S -1]or1

J -Ileft screw -1 ight screw

The corresponding forks are shown in Figures 26 and 27 and for these targets

V - (00, ± 90g, 0°, m)

Because these represent an extreme in target asymmetry the angle T is termedm
the helicity angle.

A class of nonsymmetric targets which has special significance in the

decomposition theorems of Huynen are n-targets (nonsymmetric noise) defined by

T _ 450m

Thus [S] has the general form

ra b

Lb -a
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Note that the dihedral target may be considered as a special case of an n-target

since

[ " os2a sin2cx

sin2c -cos2o.

So far only single, isolated targets have been considered but in reality radar

targets will be composed of many scattering centres each with different polari-

metric properties and target/radar motion will result in scintillation of the

target echo. In the fixed polarisation scalar theory these fluctuations have

received much attention but little is known of the dynamic properties of the

target vector V and their relation to changes of radar frequency and target

aspect. Certain interesting trends may be pointed out however.

If the target has a few dominant scatterers with different polarimetric

properties then the loci of null polarisations for charge of aspect or frequency

might be expected to cover large areas of the Poincar6 sphere but if on the other

hand it consists of reflectors with similar polarimetric properties or many

scatterers distributed within a narrow dynamic range, then clustering of the
¾(7

null polarisations might be expected. This has been verified for rain clutter(7)
and provides the basis for polarisation filtering whereby controlled suppression

may be had for limited areas of polarisation space. The frequency dependence of
(8 )V is an important area of study and has been covered by Boerner( . This work

promises to combine polarimetric information with spatial range information

available from broadband systems and as such provide a powerful theory for

electromagnetic inverse scattering.

The incorporation of full polarimetric information with radar systems has

many widespread applications. The efficient suppression of rain clutter is but

one example and in general any target whose nulls show clustering in polarisa-

tion space may be enhanced or suppressed using these techniques. The important

point to note is that SM methods allow the choice of effective transmit/receive

polarisation to be made in the signal processing and real time adaptation of

these is then limited only by the speed of processing available.

The techniques have application in improving signal to clutter ratio, ECCM,

multipath reduction and radar target identification studies. In particular the
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future will undoubtedly witness the incorporation of polarimetric techniques
with other features of the target's signature like doppler or broadband

interrogation for advanced remote sensing applications.
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APPENDIX 1. DERIVATION OF STOKES REFLECTION MATRIX

The coherent theory may be related to the Stokes calculus by considering

again the properties of the coherency matrix [J].

The general polarisation vector (spinor) may be written

LEJ- 4 y 1

then

9_+ adjoint - conjugate transpose = (Ex*,Ey*)

The products of , and a are

S I =intensity = scalar

S= J - coherency matrix

If the target has x,y corrected scattering matrix [T] then

W [T] - scattered polarisation vector

Under these circumstances the transformed coherency matrix is

TJ J-)

= IT] J[IT]+

From the properties of the Pauli matrices

_o=(OO io 2,oa

Js S S - T(J ) Q- 0,1,2,3
a 1J Ws r A -
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S S are the coefficients of expansion for the transformed coherency matrix.
Writing this in compact form and using the cyclic property of the Trace operator

IN= S - ITrQT(Js 0)

= IT r([ T) J [ T)+ao)

SITr (J[ T + a[ T])

"- IT r ( s

where

a - [T]+ a[ T]",-5

The coherency matrix may be written

3 - T (J o )C, v 0,1,2,3
vv

and

-s T r's v)v
SV

4' Thus

J2

Ss = Tr(a a))T (a) since (a) a

M S

V

We have now found a matrix M whose element M v relates the vth Stokes parameter h

of input wave to the uth Stokes parameter of reflected wave where

Mv H - ~T (au av)

iv r T .. _
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= IT] a ['" IT]

Thip relationship gives a method of determining the Stokes reflection matrix M

from any given target matrix [T)

r -s -*t

where

O0s

a a a0l (
: --•s 0o =oO I 2 03)-,

a 2s

S°..

a a a a a 0 a a
OsO0 OS Os02 Os 3

a a a a a aY a ais0 is' 1 is 2 is 3

a 2sa0 a2s a2sa2 a 2sa3

3s0 .3s,1 3s 2 3s 3

which after taking the trace gives

11 12 13 14

M 2 1  m 2 2  m 2 3  m 2 4

[I -)4

M 31 [ 32  M 33  i 3 4

V 41 m42 m43

This expression for [M] is in the natural ordering and in order to convert to

traditional P
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* ~ ~ -~: IF. r. 4.V ~

ft.,

1 0 0 0 1 0 0 0 f"

0 0 0 1 0 0 1 0
tY rd mnatural 

.0 1 0 0 0 0 0 1
ft.

0 0 10 0 1 00
-e-

Thus, using the same notation as above

i11 14 12 13 I .'t

[m ta m41 m 44 m 42 m 431

(Mtrad m 21 m 24 m 22 m 23•

m in in in
T 31 34 32 33

Thus~i

Before working out an explicit form for [M] care must again be taken to ensure

that the incident and reflected waves are referenced to the same co-ordinate

system. IM] has already been corrected for x,y plane co-ordinates through [T]

but in order that the conjugate nature of reflected wave co-ordinates be taken

into account.

1 0 0 0

0 1 00 0t

0 0 1 0

0 0 0 -1

Thus

If we then define '.-ft

[MI' " [Q)[ I
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OK, then we may use [M] ' to relate an incident wave P to a reflected wave where

both are defined in terms of the transmitter co-ordinates and write the expression

*• for received power P as a dot product of Stokes vectors j

P * [M' j(•) g() ) - Stokes vector for

(Q) Stokes vector for Q

When multiplied out
* %b

T rC (Osa 0) Tr (aOsC3) Tr (a Osa) Tr (aOsa 2 )

T aTaa T (a3 T1 (a3 a)"T (3sOO Tr (3s3) Tr (3sl) Tr (3s 2) -

T (a O) T (as 3 ) T (aia) T (aa 2)

-Tr (a2s a•0 ) -Tr(a2so 3 ) -Tr(a2s a) -Tr(a2sa 2 )

If we put

ra b]i
[T] Jand aa* = a etc

a+a* a-a*
Re(a) = 2 Im(a) - a

2• 2

then [M] becomes

2+2_c2_d2 22 22
(a +b c d (a -b +c -d Re(a*b+ c*d) ilm(a*b+c*d)

S(a2+b2 -c2-d2) • (a2-b2-c2+d2) Re (a*bc -'d) ilm (a'b-c'd) :

Re(a*c + b*d) Re(a*c - b*d) Re(a*d + b'c) ilmn(a*d-b c)

ilm(a*c+b*d) iIm(a*c-b*d) ilm(a*d+b*c) Re(b*c -a*d)

Notice that for symmetric [T], [MN' is also symmetric with nine independent

elements. For the general bistatic case however there will be sixteen elements

although symmetry in the scatterer may reduce this number.
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For partially polarised waves, averages are taken of the individual Stokes

parameters and so one may define an average Stokes reflection matrix by

H " <[I4 > where mi<av>H]a miJav m3

Huynen's(5) decomposition is based on the fact that this averaged matrix may be

decomposed into a component with corresponding coherent matrix [T] satisfying

the condition for physical realisability of Stokes vectors, plus a remainder

matrix which may be decomposed itself into the sum of two n-targets.

A-6.
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